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A scheme for a nonlocal theory of  quantized fields based on the hypothesis of  
stochastic space is proposed. Within this scheme the gaugc-invariant quan tum 
electrodynamics of  particles with spin 0, I / 2 ,  1 and four-fermion weak interac- 
tions are constructed, and nonlocal corrections to the anomalous  magnetic 
moments  of  leptons and to the Lamb shift are calculated. Some consequences of  
the neutrino oscillations and the electromagnetic properties of  neutrinos are 
considered in detail. Further  the rare decay K ~ ~ p+la and the mass  difference 
of K ~ and K ~ mesons are investigated in this model. It is shown that the 
parameter  of  nordocality (elementary length I) of  weak interactions which can 
characterize a domain of unification of weak and electromagnetic interactions is 

10-16 era. The low-energy experiments imply that quan tum electrodynamics is 
valid up to distances of  order ~ 10-  ,5 cm. 

I.  I N T R O D U C T I O N  

One of the fundamental principles of the quantum field theory (QFT) 
is the locality condition (the commutation rules). More clearly, this means 
that the commutator of operators of physical fields disappears outside the 
light cone. On the other hand, this property of locality ensures indepen- 
dence of events separated by spacelike intervals, i.e., the causality condition 
is space-time (usually called the microcausality). A strict formulation of the 
microcausality in QFT was given by Bogolubov and coworkers (1959). 

A possible violation of locality at small distances is conditioned by 
intrinsic problems of QFT like the ultraviolet divergences, the problem of 
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electron self-energy, etc. This problem appears especially inevitable as soon 
as we want to describe extended objects within the QFT. 

Among attempts at a self-consistent construction of QFT with a 
reasonable locality (macrocausality) condition at small distances, a dis- 
tinguished role is played by nonlocal QFTs. There exist two different 
approaches to construct such a theory. Supporters of the first approach 
assume that in Nature there exists some new fundamental constant of 
dimension of length, together with such constants as the velocity of light c 
and the Planck constant h. Further, they assume that at distances of this 
new universal length l one must expect a principal change in our concepts of 
the physical world and in particular the concept of space(-time) and locality 
(causality). The main problems of this approach and possible ways of 
changing the contemporary theory were discussed by Efimov (1977) and 
Kadyshevsky (1980), where earlier references concerning this problem are 
cited. Some possibilities of introducing the concept of fundamental length in 
physics were considered by Blokhintzev (1973), Cheon (I 978, 1979), Brout et 
al. (1980), Ginzburg (1975), Ehrlich (1978), Fubini (1974), Hsu and Mac 
(1979), Markov (1958), Lacroix (1979), Takano (1961, 1967), and Yukawa 
(1950). 

The second approach is based on the assumption that the parameter l is 
not a universal fundamental constant but characterizes only the domain of 
nonlocal interaction of the considered quantum fields (see, for example, 
Efimov, 1977). Thus the parameter 1 of dimension of length arises inevit- 
ably at any attempt to introduce nonlocality into the theory. Recently, 
high-precision measurements (Bailey et al., 1979; Van Dyck et al., 1977; 
Robiscoe, 1968; Robiscoe and Shyn, 1970) in atomic physics, for example, 
measurements of the anomalous magnetic moment (AMM) of muons (elec- 
trons) and of the Lamb shift, have given the following restrictions on the 
parameter l: l ~ 10-15 cm (l ~ 10-13 cm) and l <~ 10- t3 cm, respectively (see 
Efimov, 1977; Hsu and Mac, 1979) [for discussion of various theoretical 
contributions, where earlier references can be found, as well as for a review 
comparing the theory and experiment, see Brodsky and Drell (1970), 
Lautrup et al. (1972); Calmet et al. (1977), and Kinoshita (1979)]. From the 
high-energy experimental data it follows that 1~,10 -16 cm (Fliagge, 1980; 
Wolf, 1980; Beron et al., 1978; Barber et al., 1979; Bartel et al., 1980; 
Berger et al., 1980). 

Tests of locality are usually performed by modification of particle 
propagators and vertex functions. In particular, tests of quantum elec- 
trodynamics are carried out in terms of modified electron and photon 
propagators (see Kraus, 1975; Magg et al., 1972, and Ringhofer and 
Salecker, 1980). On the other hand, it is well known that the introduction of 
nonlocality into theories which belong to the second approach leads to a 
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change of particle propagators (Efimov, 1977). However, this change is not 
arbitrary and is determined by fundamental principles of QFT like Lorentz 
covariance, finiteness, unitarity, causality, and gauge invariance. Roughly 
speaking, the aim of a nonlocal theory is to find restrictions on the choice of 
a form for nonlocal particle propagators (or so-called form factors of the 
theory). 

Thus an analysis of experimental data for testing locality must be 
performed within a theory that satisfies the basic principles of QFT. The 
problem of constructing a nonlocal theory satisfying the above-mentioned 
basic principles is now solved successfully (Efimov, 1972, 1977). One as- 
sumes in this theory that neutral particles (for example, photons and 
neutrinos) are "carriers" of nonlocality, while the charged fields are consid- 
ered to be local. 

Thus introduction of the nonlocality into this theory leads to changing 
only the propagator of the uncharged particles in the perturbation series for 
the S matrix satisfying all the general requirements: causality, unitarity, 
gauge invariance, etc. (Efimov, 1977). For example, 

g . . / ( -  k ~ - i . ) - .  g.,,v~ ( -  kat.] ) / ( -  k ~ - ~ )  

for photons, and 

~ / ( -  k ~ - ~ ) - .  ~ v ~ ( -  k 2 1 ~ ) / ( -  k 2 - ~ )  

for neutrinos, where VA.,(Z ) are entire functions of a finite order of growth 
O >~ 1/2 in the complex z plane which decrease rapidly enough when 
z = p2~  _ ~  (in the Euclidean direction), and l A and l, characterize the 
size of a domain where electromagnetic and weak interactions become 
nonlocal. 

However, the above-mentioned way of introducing nonlocality into the 
theory does not remove all ultraviolet divergences from the perturbation 
series for the S matrix. There are divergences in the so-called vacuum 
polarization diagrams constructed using propagators of the charged par- 
ticles. Usually, in order to remove the divergences in these diagrams, one 
uses the modified Pauli-Villars regularization (see Bogolubov and Shirkov, 
1959; Slavnov, 1974; Efimov, 1972). This method of regularization of 
singular functions is to be understood as a formal procedure only and has 
no definite physical meaning. 

It is generally accepted at present that the essence of mathematical 
methods for removing divergences is in a more or less explicit way con- 
nected with the properties of space at small distances or with the very 
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nature of high-energy interactions which is inherent to all types of interac- 
tions. Thus we believe that the method of eliminating ultraviolet divergences 
must be the same for all types of diagrams and must have a clear physical 
meaning. 

Some attempts have been undertaken to construct quantum field theory 
in a stochastic space (see Markov, 1959; Takano, 1961, 1967; Ingraham, 
1967 and references therein). 

A stochastic space that can be used in theories of elementary particles 
was first considered by March (1934, 1937), Markov (1958), and Yukawa 
(1966) (see also review of Blokhintsev, 1975). Mathematical spaces with a 
stochastic metric and a quantized domain were investigated by Frederick 
(1976) and Roy (1979), respectively. Prugovecki's (1978a, b) papers are 
devoted to the construction of relativistic kinematics for massive and 
massless particles in the stochastic phase space. An original idea of this 
review, i.e., construction of the theory of electromagnetic and weak interac- 
tions of leptons within the framework of a stochastic space, was first 
formulated by Dineykhan and Namsrai (1977,1978). 

Papers by Namsrai (1980a, b) are devoted to investigation of the 
stochastic space R4(.~ ) with 

~=(Xo+iba,x+b ) (Xo=Ct) (1) 

x =(x0 ,x  ) being the regular part of the components ~ and b e =(b4,b ) some 
small random vector with a distribution w(b2E/l 2) obeying the conditions 

fdw(b2/12):l, dw(b2/12)~O (2) 

here I is some universal length (a scale of errors). In our case, the universal 
length I characterizes physically a certain domain within which the existing 
space concepts and causality conditions may be violated and the stochastic 
properties or fluctuations in the metrics can be manifested if they exist. 

Dynamics of particles (Namsrai, 1980a, b), relativistic Feynman-type 
integrals (Namsrai, 1980c), and Euclidean Markov field (Namsrai 1981a) 
have been investigated within the framework of the stochastic space R4(~ ) 
(see also review of Namsrai, 1981b). It appears that a field obtained by 
averaging in the space R4(~ ) turns out to be the nonlocal field considered 
by Efimov (1968,1977) (see section 2). Equivalence of these approaches 
leads to the following hypothesis: The origin of the form factors which 
change the electromagnetic (Efimov, 1972) and weak (Efimov et al., 1973) 
potentials at small distances and the properties of the vacuum polarization 
may be connected with the stochasticity of space on the microscale. 
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Thus within the framework of our scheme, all fields, both neutral and 
charged ones, become spread out (nonlocalized) over the space. This allows 
one to take into account in a unified way an effect of stochasticity (or 
nonlocality) in all physical processes. However, the change of charged 
particle propagators essentially complicates the proof of gauge invariance of 
the theory. 

This paper is a review of the construction of gauge-invariant quantum 
electrodynamics for particles with spins 1/2, 0, and 1 and of the four-ferm- 
ion theory of weak interactions in stochastic space. Within this framework, 
the electromagnetic and weak processes are investigated and contributions 
to the AMM of leptons and to the Lamb shift due to nonlocality (stochastic- 
ity) are estimated. The problem of neutrino oscillations and its conse- 
quences are also discussed in this theory. Here the considerations are mainly 
concerned with the low-energy processes. Notice that at very high energies 
testing of locality of the theory may be difficult because of interference 
effects between the electromagnetic and weak interactions. For example, in 
the standard model of electroweak interactions, testing of QED will be 
disturbed by the interference with the weak effects due to Z ~ bosons. 

2. STOCHASTIC SPACE AND NONLOCALITY 

In the relativistic theory the space in which the physical processes are 
investigated is the Minkowski space. Now the problem appears as to how to 
introduce the stochasticity into this space. 

Indefiniteness of the metrics of this space leads to specific problems 
which do not appear in the case of Euclidean space. These specific difficul- 
ties in the physical space are connected with the invariance assumption and 
normalization condition for the probability of an interval in the indefinite- 
metric space (see Blokhintsev, 1973, for details). For example, the require- 
ment of invariance, roughly speaking, means that the distribution w ( b , )  of 
the vector b e must be a function of the interval b 2 = b,b~ = b~ - b 2, and the 
normalization condition gives the equality 

fdw(b.b.)=l 
These two conditions cannot be, in fact, fulfilled simultaneously in the 
Minkowski space. It turns out that one can get rid of the above-mentioned 
difficulties by making the following assumptions (Namsrai, 1980a, c). 

1. The physical quantities are considered as functions of complex times 
t + i r  in the limit r 
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2. The space stochasticity appears in the Euclidean space (~, x) but not 
in the Minkowski space (t,x). The importance of the method of shift 
x 0 ~ x 0 + i~- in the time variable in quantum field theory and quantum 
mechanics was noted by Alebastrov and Efimov (1974) and Davidson 
(1978), respectively (see Efimov, 1977, also). Thus in our model the actual 
points of the space R4(~ ) consist of two parts (1), where b 4 --~-, and any 
physical quantity f in R4(~ ) depends on arguments of the type x o + ib 4, 
x + b ,  i.e., f =  f ( x  o + ib4,x+b ). 

Since, in our model the actual points of the space are of a stochastic 
nature, these points cannot be used as a basis for a coordinate system, nor 
can one take a derivative with respect to them. However, the space of 
common experience (i.e., the laboratory frame) is nonstochastic on a large 
scale. It is only in the microworld where the stochasticity manifests itself. 
One can then continue mathematically from the microworld to this large- 
scale nonstochastic space. This mathematical construction provides a non- 
stochastic space to which the stochastic physical space can be referred. This 
is the Frederick (1976) argument. In our case the mathematical construction 
reduces to averaging with the distribution w ( b 2 / !  2) at any point of the 
space R4(X ) at a given time. 

Therefore the averaged quantity ( f ( ~ ) )  on R4(.~ ) with w(b2e/l 2) is 
called the physical value off (x ,  t) (Namsrai, 1980b). Especially, the consid- 
ered field q0(.i) after averaging in R4(X ) acquires the following form: 

~R(x)=--(~(X))R=fd4bEw(b~/t2)~(xo+ib4,x+h) (3) 

This is just the nonlocal object which has been carefully investigated by 
Efimov (1968,1977) from the viewpoint of the distributions 

f(x) = X cnV]2nf~4(x), El-- - - 7  t- - -  (4) 
. = 0  ~x0 2 0 x  2 

The space-time properties of these depend essentially on the sequence of 
coefficients c n. Efimov has shown that the objects ~pR(x) constructed by 
these distributions are spread out (nonlocalized) over space. Thus the 
relativistic invariant distributions K ( x )  give a correct description of ex- 
tended objects. In this case, roughly speaking, the parameter ! may be 
identified with the size of an extended object (a particle). 

Due to Efhnov (1977) we can calculate the causal Green functions of 
the spread-out field ~pR(x) [keeping in mind that the T-ordering symbol 
concerns the field cp(i), where ~p(~) is a scalar field with a mass m] by the 
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following formula 

6-0 (x, - x 2) = (01T(%(x  , )%(x2))105 

where 

= ffd'b,ed4t,2e w(b~e/t 2)w(b~e/t ~) 

• (OIT(qo(x~o + ib~,,,,,~ +h, )r(x2o + ib2,, ,,~ +~))105 

d4p 
= f f  d,b,,~d,b~:(b~,~/t~),,,(bIE/l,) 2if (2,,)' 

X exp[ip~ -- x2~ + ib'4 -- ib24) -- ip(x, --x 2 +h i  --bE) ] 
m 2 _ p2 _ ie 

= Is d4p linK---2(---p212)12 exp[ip(xl-x2)] 
(2~r)4 p2 _ ie 

~ f -  : : ) :  fd'b:xp(- ipb-- pob4 )w( b 2/12 ) 

: - :)':] A- :)': 

(5) 

p ~ :  po ~ - p~ (6) 

Here ~-i(z) is the Bessel function. 

Notice that the Fourier transforms of distributions (4) are determined by a 
representation of the type (6). The expression (6) is investigated as usually 
in the Euclidean domain p 2 < 0  of the momentum variable p (Efimov, 
1968, 1977). The passage to the case of p 2 > 0  is done by an analytic 
continuation (see Efimov, 1968, 1977). Further we are interested only in the 
class of distributions w(b2e/! 2) for which / ( (z )  (6) are entire functions of 
the variable z with a f'mite order of growth oo > 0/> 1/2 and which decrease 
rapidly enough when z = p2 __, _ oo (in the Euclidean direction). 

So, starting with the hypothesis of stochastic space we come to the 
nonlocal theory of Efimov with the only difference that the causal Green 
function S(/~) of any charged particle is replaced by 

s(p)-~ s R ( ~ ) :  v ( -  p2t2)s(:)  
where 

v(- e2t2 )=I g(- e2: )12, := p,,v,, 
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for which the Mellin representation 

v(_p21~):  1 f -#- '~a/;  ~(~) : ~ m 2 - v ~ - i ~ )  ~ (7) 
(0<p<i) 

is valid. The form of the functions V( -  p212) and v(~') depends on the form 
of the distribution w(b~/12). For example (Namsrai, 198 la), let 

w.(y'): 

(2ml) ''2r (m/)2( 1 -  y2) - ' / 4  
4(sin ml / ml -- cos ml ) 

0 ~ < y < l  

0 y~>l 

Then we obtain 

m2t 2 )2[ 
~:lgm(--P2t2)12: sinml/ml--cosml (m2-P2)Q-~ 

• - 

(8) 

o~(~) = 92 '+2~[2~ 2 + 7~ + s]/r(7+2~') (9) 

Here m is some parameter (m212<< 1) which can be identified with the 
particle mass. Notice that the form factor (8) in the case m = 0  describes the 
spread-out electron as a uniformly charged sphere of radius l (Efimov, 
1977). 

The main restrictions in the choice of form factors V( -  p212) as entire 
functions arise from the fundamental theoretical principles, i.e., from unitar- 
ity and causality (Alebastrov and Efmaov, 1973,1974). 

The physical meaning of form factors consists of changing the form of 
potentials between interacting fields (for example, the Coulomb and Yukawa 
laws) at small distances and in making the theory finite in each order of the 
perturbation series of the theory in coupling constant (Efimov, 1977). The 
question about a possible unique choice of the form factors [in our case of 
distributions 2 2 w(bE/ l  )] was discussed by Efimov (1977) (see also Papp, 
1975). 
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3. GENERAIJZATION OF KROI~'S PROCEDURE AND 
GAUGE INVARIANCE OF THE THEORY 

The hypothesis of stochastic space leads thus to a change of propaga- 
tors of both neutral and charged particles. It is well known that any 
modification of the local causal Green functions of charged particles re- 
suits in a violation of some algebraical relations (for example, the Ward- 
Takahashi identifies). The fulfilment of these algebraical relations grants the 
gauge invariance of the theory. There are numerous papers (Kroll, 1966; 
Kraus, 1975; Magg et al., 1972; Ringhofer and Salecker, 1980) devoted to 
this problem. Among these, Kroll's work plays an important role. The 
earlier result obtained by Dineykhan and Namsrai (1977) is based on 
Kroll's prescription. The essence of this procedure consists in the following. 

1. To satisfy the conditions of gauge invariance for the modified theory 
(with the changing propagators of the charged particles) one must change 
the form of the one-photon vertex (for example, in the case of QED): 

"tt, -, U~(q, k ) =  - -  dp(k)SRl(O) (lO) 

(Figure 1) due to the Ward-Takahashi identity 

k.r.(p, q) = SR( ~ )-- SR( O ) ( l l )  

where 

F~,(p,q):SR(p)U~(k,q)SR(O) ( p : k + q )  (12) 

Here d~,(k) is some operator whose action on the entire functions is 
determined below. 

2. Any theory with the modified propagators and the vertex functions 
contains the minimal number of the many-photon vertices e"U,, satisfying 
the condition 

U,(q; k I ..... kn)= -d(kn)U~_l(q; kl, . . . ,k~_l) (13) 

with U o = SR -I. If SR -I and U I are polynomial functions then the minimal 

q ,. t k  
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(Kroll, 1966), we obtain 

d~( k ) V ( -  q212 ) = [ V ( -  ( q + k )212 ) - V ( -  q212 ) ] ~cY~' 
k2 (15) 

5. The d operation for the inverse of entire functions. Acting on the 
identity 

V-'(--  q212) V(-- q212)= 1 

by the d operation we get 

d~(k)V-l(  - q212) = _ V- l(__ (q + k )212)[ dl , (k)V(-  q212)]V-I(-- q212) 

(16) 

6. Calculation of d~,(k)SR(?t) where SR(~) is the modified propagator 
of charged particles. From the identity 

)[ sR( )s;  ,( r ) ] =o 

it follows that 

d~(k)SR(~l)=--SR(~l+l~)[d~(k)S;l(~l)]SR(~l) (17) 

or 

where 

d~( k )SR( O ) = SR( ? 7 + ~)r , . (k.  q )Sn( ~t ) 

r , . (k,  q) = U,,( k, q)= - d,( k )S R'( (t ) 

It is a particular case of (14) at n = 1. 
7. The proof of validity of the generalized Ward-Takahashi identity: 

( p. - q.) r.( p, q) = sR(/~) - sR(o) (18) 

where 

F~,(p,q)=SR(p)U~(k,q)SR(?l), k = p - q  
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Taking into account the relation 

U~,(k, q ) =  y~ ,V- ' ( -  q212) + (m - Cl - Ic) V - ' (  - p212) 

• [d~,(k)V(-- q212)] V- ' ( - -  q212) (19) 

and equation (15) we obtain after some calculations the identity (18). 
8. Charged closed loop: f'LrSt of all notice that due to Kroll (1966) the 

closed loop in the local theory is given by 

H.(k ,  . . . . .  k~)= I f d4qSp{F~(q;  k,  . . . . .  k~)SR(0)} 

where 

SR(q+ ~ /~)F~(q;kl  . . . . .  k , , ) S R ( Z l ) : ( - - 1 ) " d ( k t ) ' " d ( k , , ) S R ( ~ l )  
i = l  

A generalization of this equation to the modified theory with entire form 
factors represents no difficulty and the charged loop is determined by the 
following expression: 

H~(k,  . . . . .  k ~ ) : l f d 4 q S p { F f ( q ; k ,  . . . . .  k~)SR(#)} (20) 

where 

I f ( q ;  k I . . . . .  kn )=  V( - q~i2)F~(q; k I . . . . .  k~) 

k, . . . . .  g )sR(o) 

H : ~ , , E  l 
j =  j : ( n  - y ) !  SR(O.) 

• Uj(qj; kj+ I . . . . .  k, ,)SR(Zlj)r, ,_j(q; k I . . . . .  kj)SR(ZI) 

= ( -  l )nd(kl)  --- d(kn)SR(~l ) 

with F 0 = S ;  i(•). Tensor indexes are omitted here. 
Thus we have generalized Kroll's prescription for our case and have 

obtained the necessary algebraical relations which provide gauge invariance 
for the S matrix in any order of the perturbation series. Investigations of 
gauge invariance of the S matrix for concrete interactions will be given 
below. 
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4. THE INTERACTION LAGRANGIAN AND CONSTRUCTION 
O F  T H E  S - M A T R I X  

According to the above deduction, we must construct all physical 
quantities (for example, interaction Lagrangian, causal Green function, etc.) 
by means of the nonlocal fields ~s(x) which are associated with the fields 
~0(.~) by formula (3). The causal Green function of the field ~s(x) is 
determined by expression (5): 

| - y )  = (oI T ( + R ( x ) + R ( Y ) ) I O >  

in the physical space, i.e., in the space of a large scale, where 

.(x - y )= f d~qe'~-"'v( - q212 )A( q ) (21) 

is the Efunov nonlocal Green funcfon if V(z)=lK(z)] 2 is an entire 
function and A(q) is the Fourier transform of the local Green function. 

The Lagrangian of a system of fields is constructed in terms of the 
averaged fields ~I'=q%(x)=(q~(i)) R in the Minkowski space. Thus the 
initial Lagrangian describing the electromagnetic and weak interactions of 
leptons is chosen in the form 

~(x)= G(~)+ e_(x)+ G(~) 

1 
e ~  2 :[OIjA"(x)l[3#A~ + ~" :~')(x)(i~--mJ)~ 

) 
(22) 

e : - - e : ~ ( x ) d ( x ) + ( x ) : ,  

where Aa(x ) and q'j(x), v(x) are the noulocal fields of photon and leptons. 
The summation in (22) runs over all considered fermion fields ( j =  

e,~,ve, v~,). 
Formally, the S matrix can be written in the form of the T products: 

n!  n 
n = |  

s . = ; ~  --- fa.rd [~_(xj)+ e.(xj) 
) - I  

(23) 
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Here the symbol T d means the so-called Wick T product or T* operation 
(see, for example, Bogolubov and Shirkov, 1959; Efimov, 1977) and the 
lower case d corresponds to the algebraic prescription determined in Section 
3. If the form factor (6) is chosen as an entire function, then the proof of 
unitarity and causality conditions in our scheme proceeds by the same 
method as that of Alebastrov and Efimov (1973,1974). Quantization of such 
a system has been carried out in detail by Efimov (1974). 

In order to construct the perturbation series for the S matrix (23) by 
prescriptions of the usual local theory, it is necessary to change (in the 
Feynman diagrams) 

rn+fc  --, m + l ~  V , , ( _ k a l 2 )  ' g t , ~  V o ( - k a l 2 )  

m 2 - -  k 2 - -  ie m 2 - -  k 2 - ie - -  k 2 - -  ie -~ g~'~ - -  k 2 - ie 

Vo(- k2t 2) 
- -  k 2 - -  i e  - -  k 2 - ie 

and at the same time to insert the modified function (10) into the verticies at 
the external photon lines. The calculations of the matrix elements for the 
charged lepton loops will be carried out using the formulas (20) and (14). 

5. INVESTIGATION OF THE PERTURBATION SERIES FOR 
THE S-MATRIX IN THE QUANTUM ELECTRODYNAMICS 

OF PARTICLES WITH SPINS 1/2, 0, AND 1 

5.1. The Spinor Electrodynamics (QED). The construction of the per- 
turbation series for the S matrix is possible only within the framework of an 
intermediate regularization procedure. We shall use the regularization pro- 
cedure of Alebastrov and Efimov (1973). The regularizations introduced 
there make it possible to pass to the Euclidean metrics in any diagram of the 
perturbation theory. We recall that the form factors V ( - q 2 1 2 )  decrease 
only in the Euclidean direction, i.e., when q 2 _ , _  or. Therefore we shall 
investigate the Feynman diagrams in the Euclidean momentum space. 

Let us calculate the matrix elements for the S matrix corresponding to 
the following primitive diagrams (see Figure 3) which are divergent in the 
usual quantum electrodynamics. 

5.2. The Diagrams of Vacuum Polarization. In the gauge-invariant 
stochastic theory the vacuum polarization in the second order of the 
perturbation theory is determined by diagrams sketched in Figure 3a. In the 
momentum representation the term of the S matrix which corresponds to 
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QI b} c} 

Fig. 3. 

these diagrams is given by an expression of the type (20): 

1 4 8 1-l~,,( k , ,k2)= lim ie2 r2 f d qV' ,(-  q212)Sp[Ff~(q; kl,k2)Sg( ?t)] 
8 - 0  ( 2 ~ )  4 

(k I + k  2=0) (24a) 
where 

s(~2)r~.(q; k,. k2)S(q)= ( 2 . --1) d~(k,)d~(k2)S(q ) 

I - ~ - i ~  v(g') ~8~:r~_2 
gd(-q212)=-~t f -  +i df si---~r tt '" -q2- ie )12]  ~ 

( o < f l < l )  

q2=q+kl  + k2 = q, S - - S  R (24b) 

Equation (24a) is simplified by the d operation determined in Section 3. The 
regularization procedure 3 guarantees the possibility of passing to the 
Euclidean metric. Taking thus the trace, integrating over d4q, and going to 
the Euclidean metric we obtain (in the limit 3 ~ 0, detailed calculations are 
given by Dineykhan and Namsrai, 1977) 

e2 2 1 -#-i~o v(~') 2 2)~" IIy.(k):--d-fiz(k.k.-g,.d~ ) ~ f  +, d;si---ff~f(m l 

xfolaxx(l_x),_~ r ( - ~  e~ 
r ( 1 - t )  o 

where ~0 = 1 -(k2/m2)x(1 - x). 
Assuming m2l 2 << l we get 

e 2 
I[Rv( k )= -~2 ( kvkl~ -- g#uk2 ) foldX x(1-- x ) 

[ ~~ 5 , ) 6 ] • log ,1_ ~, + ~'(O)+logm2t~ + O(m~t 2) 
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We see that after the charge renormalization the value obtained for the 
vacuum polarization coincides with the renormalized expression in the usual 
local theory (see, for example, Bogolubov and Shirkov, 1959). 

5.3. The Diagram of Self-Energy (Figure 3b). The corresponding term 
in the S matrix can be written in the form 

where 

Here 

- - i :q (X)ZR(X- -  y ) q ( y ) :  

I__ f d4peiP(X_.).)~.R ( P ) ~R(X-- y ) =  (2,n.)4 

lim -- ie2 f a"k v~ k'-~2) 
2 n ( P ) =  8_0 (2rr) 4 _k-----z~i~ 

• V ~ ( - ( p - k ) 2 1 2 )  

m + f i - -  l~ 

Y~'mZ-( p -  k ) z - ie 

Jo' ( b ~  .. . .  b'7~"= r(~,) .  -rT~7) as , . . ,  a~,,8 1- 

Then, after some calculations we get 

2 R ( p ) = - -  

i=1 

e 2 I r -~-~o, . .~(~ ' )< ,.,)~ 
- -  as-7----=t m t 

8rr 2 2i J-B+ioo sm~r~ 
(0</3< I) 

X 

(0<-f<l) 

r ( - n - ~ )  
r ( 1 -  n ) r ( 1 - ~ )  

(25) 

We can use the representation (24b) for the form factors VoS( - q212) and 
V,~( . . .  ) and the general Feynman parametric formula 
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Assuming the value of m212 to be small, one can obtain for the 
self-energy the following expressions: 

e----~-z foldx(2m - fix)log m2 
~ R ( P ) =  8,/7,2 m2p2x 

e2m{[ 1 7r 
+ 3 log - 3v'(O) - 1 + - -  

16~r 2 m - ~  2i 

• sin2qr~ (3--~)] q-O(m212) } 

+ l--6-~2 ( m -  p ) l o g ~ - ~  ~i  ~_/~ +,~ 

X v(~')v(-~'sinz~r~ " )(1--~')1+O(m212)} (26) 

The calculation of integrals of the type 

-/3 + i~ sin2~rf 
(0</3<1) 

is simple for a concrete choice of the function v(~'). For example, for 

Vb(-k212)=[sin(----k212)l---~/2] 2=1(_k212)1/2 2iY_v+i~/'-v-i~176 vb(~')~ sin 7r~" ( -  k212)t 

(0<v<l) 

where 

Vb(f) = 2 '+2t /F(3  +2~ ") 

the first integral in (26) is of the form 

~.f-O-imd~V(~)~(--f) (3--~ ' )=  23 
i .t_ B + i~ sinZlr~ " 9 

(27) 

229 
90 

n--3 
.=2n(4n2--1)(n2-1) 
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Incidentally, we notice that the form factor V h describes the spreaded 
electron as the uniformly charged ball with radius l (Efimov, 1977). 

Thus the value obtained for the self-energy differs slightly from the 
value calculated in the Efimov's (1972) nonlocal theory. 

5.4. The Vertex Diagram and the Corrections to the A M M  of the 
Leptons and to the Lamb Shift. Let us consider the vertex diagram shown in 
Figure 3c. In the momentum representation it has the following form 

where 

e2 f d4k |  22 U ( p , q )  = (2rr)4 i p - k )  1 )7,,d~,(q)S(l~)y~ 

1 vm(- k2t 2) 
d~(q)S(l~)= rn_l~_gty~ , m - s  

1 [V,,,(_(k+q)212)_V,,,(_k212)]07~, 
+ m _ l ~ _  0 q2 

The intermediate regularization procedure 3 is omitted here and below. By 
using the identity 

a" -- b" = n( a - b ) fotdx[ ( a - b )x + b] " - '  (28) 

the difference of the form factor values can be transformed to the form 

V,,,(-(k + q)212)- II,,(- k212)= - [q2  +2(k .  q)] 

f df_:_7-c-~l f X~ _B+ioo starts 

• f 'dx [ rn  2 -  k 2 - 2 x ( k . q ) -  q2x]~-' 
"0 

which is convenient for calculations. 
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Carrying out the necessary estimates we obtained the usual form for the 
matrix element of the vertex functions between two free single-lepton states: 

F~(p,q)=~(p'){y~,F,(q2)+ 2-~jo~,~q~F2(q2)}Uj(p) (29) 

where Fl(q 2) = f l (q2)+ f2(q2), F2(q 2) = gl (q2)+ g2(q2). Here 

1 

{I ] L ( r  = N(f,n) - 2 + 8 B  -282  - 2 . - 5 ( 1 -  ~,)(1 - c,) r ( l -  ~ - f )  
mj 

X e T ' +,7 +~" _ 2 F ( -  rt - f )  t~'~ +~} 

g,( qZ )=4N(~, ~ )8( l -- 8 )F(1-- n -- ~ )gT ~ +0+~ 

f2(q2)=N(~'~l)Vlfotat{I24--2 q-~2~(a+tr)] mj m/ 

x r (1  - n - t ' ) e2  ' + '+~ - 2 r ( -  n - t)15 ~ +~} 
) 

g2(q z) = 4 N ( L  n)ny'dtB[1 - ,8 - 2 a  - 2  t,,, ] r (1  - n - ~)eT' +'+~ 
"o  

N(~', r/) = - -  
e 2 ~2 ' v(~)(m}12)~ 1 f - p - i ~  v ( r l ) (m}12 )n  

(2~r)' ~i f / s s ~  d~" sin ~r~" 2iJ_p+io~a'si--m--~ 

X 
I ! 

F ( I -  ~ ' )F(1-  ~) f f fdad f idYS-~7-nS(1-a- f l -7 )  
o 

q2 q2 m@ 2 t~2(q2)=l~,(q2) - 2 t y ( l - y t ) + 2  ~a tT+ tTfl 
mj m~ �9 

q2 
I~ i(q2) = (1 - ~8)2 - __-7~-ay, (mj=me, mt,) 

m i 
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The first term of (29) in the limit q2 -o0 and with the assumption m~l 2 << 1 is 

F,(q2) 

9 1 - 2 1 o g ~ - - v ' ( 0 ) +  a lOgm)12 4vr my 

m2,,,,,[ 
v(1) 3 m}l 2 27r m y 

XI2(logmj 5)+v(1)m2,z[lv,(O)+2v'(1) 3}} 
[ o ~ m r 8 3 v(1-----)- + l~  

e 2 

4,r 

(my is photon mass) and contains the terms corresponding to the charge 
renormalization of the leptons. The second term of (29) at q2 = 0  contrib- 
utes to the AMM of the leptons by 

a j = ~ ( O ) -  4 a [ - # - i O ~ d ~  v(~)  f - v - i O O d r  t v(rt) 
(2i) 2 2-~Y-O+ioo sinTr~" -v+io~ sin~"O 

(1 - r / ) ( 1  • (m}12) "+~ ~-~ - - ~/)-j-~-qS ~ T ~. ) 

Assuming m]l 2 << 1 ( mj = rn e, m~,) we get 

a j =  l + m } l  2 -- v(1)--  s'n2~r" 
J - , 8  + ioo 

- ~ - -  1 -  m 12v(1 (30) 
2,r 

The present experimental values of lepton AMM (Van Dyck et al., 1977; 
Bailey et al., 1978) 

aexp(e- )=(1,159,652.41--+0.2)10 -9, aexp(~) = (1,165,924--+ 8.5) 10 -9 

are reliably confirmed by quantum electrodynamics (Calmet et al., 1977; 
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Kinoshita, 1979). It is natural to suppose that the contributions calculated 
here should be of an order not greater than the experimental errors. This 
makes it possible to establish the following restrictions on the parameter l: 

4.9X 10 -14 c m  
1 <  

4.5 X 10-14 cm 

for V = V I ] 

for V=V~ I ( e -  ) 

l < ~  1.5X 10 -15 cm 

[ 1.4X lO-IS cm 

for V = V I ] 

for v =  v, I 
Here V= V I is given by (see Namsrai, 1981a) 

V , = s i n 4 [ l ( m 2 - q 2 ) ' / 2 ] / [ l ( m 2 - q 2 ) ' / 2 ] 4  

1 f - B - i ~ 4 1 .  Vl(~) 2~(m~ ~ ie)~ = "a-: l ~ a _.-r7"~ l , " - q - - 
Zl d-- fl + ioo sm~rs 

(O<B<I) 

21 + 2~'(22+2~" - 1) 

F(5 +2~') 

(31) 

and V = V~ equals (8). 
Similarly, for the level n = 2 of the hydrogen atom the calculated shift 

2SI/2 - 2 P i / 2  due to (29) is (see Efimov, 1977, for detail) 

A E t ( 2 S , / 2 - 2 P , / 2 ) = o t Z R y ( m 2 F ~ ( O ) - I  F2(O) } 

a3 Ry.m2elZv(1)[ 3 v , ( O ) + 2  v'(l____) ) 13] - 2~" 3 v(1) +l~  -~- 

For the function vs(~" ) determined by (9) this expression acquires the form 

l ) 
AE,(2S, /2  - 2 P , / 2 ) =  ~--~Ry- - - 7 -  log ._-7G7, 2 +4.15 

mel 
(32) 

where 

a3Ry=  meo:/2 = 1.25 • 103 MHz 

The observed shift of 1057.912---0.011 MHz is well explained by QED 
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(Brodsky and Drell, 1970; see also Scadron, 1980). Therefore I AEI(2S~/z- 
2P~/2)1~<0.011 MHz and substituting the formula (32) into this inequality 
we get/~<1.9• 10 -1~ cm. 

The S matrix obtained is gauge invariant. Indeed, in the stochastic 
electrodynamics under consideration the Ward identity 

a ~.R(p)=_U(p,O) aPt 

is valid because this identity is a direct consequence of the identities (17) 
and (10). Since we must not do any subtractions of infinite counterterms, no 
dangerous terms which can break the Ward identity when the formula (17) 
is valid will appear in the perturbation theory. The diagram of the vacuum 
polarization is gauge invariant due to our choice of the gauge-invariant 
regularization procedure of K_roll. 

6. THE ELECTRODYNAMICS OF PARTICLES WITH SPINS 
0 and 1 

Now let us construct within the framework of our approach the 
gauge-invariant quantum electrodynamics of particles with spins 0 and 1 on 
the basis of the first-order Duffin-Kemmer equations (see Efimov and 
Namsrai, 1975). 

Investigation of the perturbation theory for the S matrix constructed 
on the basis of Duffin-Kemmer equations will be formally the same as in 
QED of leptons. Therefore, in this case we should use the methods and 
procedures developed in constructing the gauge-invariant spinor elec- 
trodynamics in terms of stochastic space concept. 

Hence, as was shown above, the averaged field xt'R(x ) of a boson field 
in the space R4(.~) leads to the change of the free-particle propagator (in 
momentum representation): 

T(~O) = / ~ ( p  + m ) -  p2 + m 2 
m(m z_p2_ie) Vr,,(-- p212)T(:)-- TR(:) 

where/~ = p~,fl~ and fl~ are the four 16-rank matrices which are sprit into 
five- and ten-rank matrices for particles with spins 0 and 1, respectively. In 
this case it is also necessary to change the form of the one-photon vertex: 

fl~ ~ U~(q, k ) =  -- d~,(k)T~'(~t) 
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Here the following identities hold: 

d~,( k )TR( O )= TR( 0 + l~)U~( q, k )TR( ?t ) 

(p. - q . ) r f  (p,  q ) =  TR( p ) -  TR(O) 

where 

and 

Ff(p ,q) :TR(p)U~(k ,q)Tn(O) ,  k : p - q  

U~(k, q ) : f l~ ,V- ' ( -  q212)+ (m - 0 -- k) V- ' ( - -  p2/2) 

• [d~,(k)V(- q212)]V- '(-  q212) 

d~,( k ) V ( -  q212) = { V(- p212 ) -  V(- q212) } k~,- 2,_~._B/~ + 2..,_~/~B 
k z 

Let us now examine the perturbation series for the S matrix. 
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(33) 

(34) 

6.1. The Diagrams of the Vacuum Polarization for Boson Fields. The 
expression (24) for boson fields becomes 

II~(kt,'n k2 )=  ,-olim (2rrie2)4 fd4qV~(-q212)Sp[Ff ~(q'kt'k2)T~([t) ] 

where kl + k2 =0, q 2 = q + k t + k 2 = q ,  

Tn(gt2)F~,~( q, k,, kE)TR(~t) ( -  2 = 1) d~,(k,)d~(k2)Tn([t) 

(35) 

Sp( flj, fl~flxflo. . . flpfl, flx} = f g~,~gxo" " g,x + g~xg .... " " gp~gx~' i fn i seven  
Lo if n is odd 

Making use of the definition of the d r operation (34) for an entire functions 
and 
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for the scalar boson, 

Sp fl.fl~. =6g, .  

Spfl~fl~,flxflo = 3(g~,,gxo + g~,x g,,p ) 

Namsra i  and D i n e y k h a n  

for the vector boson, and performing necessary calculations we get 

_~ ( ) 1 ~ - : - :  v(~)(m212) ~ 
II~,,)(k) = - g~,.k 2 - k .k .  d~ 

v i sin Ir~" 
(0<3,<1) 

X F(1 -  ~ ' ) r ( -  ~) fotdX(1 _ x)-l-(1 _2x12eo ~ 

for the scalar boson, and 

"(~) k a 2 I f-y-iO~d~ v(~) (m212) ~ 

(l<y<2) 

X fotdX(1-x)-#{3(1-2x)2 

• r ( - ~ ' ) / F ( 1 -  ~')+ 2 [ F ( - 1 -  ~ ' ) /F(1-  ~')] rio} Eo ~ 

for the vector boson and ~o = 1 - k 2 x ( l - x ) / m  2 (see Dineykhan et al., 
1977, for detail). 

Assuming the value of m212 (mj=m s, my) to be small we obtain 
finally 

- (s)  0r 2 

, y4 
X ~, k2 [ dy +2[v'(O)+logm212]+ 

l m2 do l - (k2/m2)(1-  y 2) 

- ~) a (k2g~, _k~,k~) 

X I f ~ (  k2 - -2x)2)log[1 k2x(1 x)] jodX 2 - 2 - ~ x ( 1  x ) - 3 ( l  --m2 -- 

+ 2 ( 2 - '  6m 2 k2 )[v'(O)+logm2l 2] 

3 1 k 2 7 k 2 "1 
m2l 2 9 m 2 ~--~+-~x~l-x)' X 
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It is necessary to perform the charge renormalization of the scalar boson 
and the charge and mass renormalization for the vector boson, and after 
these procedures we obtain the usual quantum-electrodynamical quantities 
for the vacuum polarization of these particles: 

f k2 ] Ol k 2 foldyy4 / y 2 )  - ' "  - (k2g~,,-k~,k,) 1 -  ~ ( k ) -  2~ ~ -~( l -  

~ ( v )  _ _  O~ 2 

• - -x ) - -3 ( l - -2x )  2 log 1-- x(1--x)  
m -  

~2 k 2 z ~ "~ 
- -3 (1 -2x )  - ~ x t l - x ) + 2  k " x ( 1 - x )  

J m 2 

6.2. The Self-Energy of the Boson. Let us now consider the self-energy 
diagram, shown in Figure 3b (here the solid line corresponds to the boson 
field). In our scheme the term of the S matrix corresponding to this diagram 
has the form 

where 

--i:-~(x)Z~(x -- y ) ~ ( y )  : 

fd'p eip{x-Y~E~(p) Y4(x - y ) =  (2~)' 

--ie2 fd4k  Vo ~(-k212) 
Y'~(P)=~-olim (2~.)4 _ k 2 _ i e  

m2 _ )2 

_(p_k)~_~] ~Y~(-(e- k) ~l~ ) 

(36) 

Passing to the Euclidean metric in (36) and substituting representation (24b) 
into it in a way similar to that used in the previous section it is easy to 
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obtain the following expression: 

om{[,,2__ ] o,o [ ~b(p)=.~_~. B + m + ~ ( l - B )  ar _ 2 ( l -B) - -~+- -m_ m ff,.o 

1~2o7 1 B(1- B)V,., + (1- B)~-; ~2.o} 
2 

where 

B =fl, fl~,, P =fl~,P~,=floPo - ~ P  

p2 ) 1 [-#,,+b-i~Od~ v(~) (m212) ~ ~a,b : %.6 m212, : ~t 
m 2 J_lL~+i ~ sin ~r~" 

1 -yn+t,-ioGd. q t)(n_____..~) [ 2.2),ma,b(~,Ti ' p2 ), 
• 2 i f  +i~ sinTr~ t m t  m2 Yu+b 

m 2 = r ( 1 - ~ ' )  u 

Here 

a + b  a + b + l  
2 <fl'~+b + 7'~+b < 2 ' a, b=O,1 ,2  

We calculate the electromagnetic correction to the boson mass in the two 
limits m2l 2 << 1 and m2l 2 >> 1. We have (i) for m212 << 1, 

30t m 
2 b ( m ) : -~-~ B ( B - 1 )  -~T~ 3 = 

3~ m 
- - 3  for s = 0  

47r m2l 2 
O~ m 

- -  3 for s = 1 
4~ m2l 2 

and (ii) for m212 >> l ,  i.e., the classical limit, 

___ [ o ( , ) ]  _ f - v - i o ~  d . q V ( ~ q ) v ( - 1 / 2 - ' q ) 1 +  
Y.~(m) 2ml 2i "-v+ioo sin21r~ m - ~  

(1/2<u 

for s = 0 , 1  
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Here 

f - B - i ~ d ~  

(O<fl<l)  

v( B )v ( -  1--7/) F(1--r/)[1 + O(log m2lZ ) ] 
sin2vr~ 

The vertex diagram and the statistical characteristics for the bosons 
were investigated by Dineykhan et al. (1977) within the framework of the 
stochastic space and by Efimov and Namsrai (1975) in the nonlocal theory. 
Here we shall not write out these results because they are quite cumbersome. 

It is verified easily that in the case of the electrodynamics of particles 
with spins 0 and 1 gauge invariance holds automatically by construction. 

7. THE CONSTRUCTION OF GAUGE-INVARIANT 
FOUR-FERMION THEORY OF WEAK INTERACTIONS IN 

THE STOCHASTIC SPACE 

7.1. Introduction. The four-fermion theory (Fermi theory) plays, and it 
seems, will play a fundamental role in the development of the theory of 
weak interactions. The four-fermion V-A interaction describes in a unified 
way some weak decays of leptons and fermions. Earlier success of this 
theory in the explanation of muon and 13 decays has given a certain hope 
that within the framework of this theory weak processes might be described 
at least in the low-energy domain. 

However, in four-fermion theory one meets the well-known difficulty 
caused by the ultraviolet divergences and the renormalization problem. For 
this reason, calculations of higher-order corrections in the perturbation 
series in coupling constant G are difficult. Notice that a similar situation 
occurs in the theory with intermediate vector bosons. 

Ways of eliminating these difficulties were proposed in different mod- 
els which can be classified in two groups. One of them is connected with 
some schemes and approaches aimed at constructing a new theory of weak 
interactions within the framework of gauge theory [especially, the unified 
theory of weak and electromagnetic interactions, i.e., the standard model of 
electroweak interactions due to Weinberg (1967) and Salam (1968) (see 
Glashow, 1980).] The other approach assumes a modification of the usual 
theory of weak interactions based on the analysis of fundamental principles 
(causality condition, locality and properties of geometry on small scale, etc.) 
of modern local quantum field theory at small distances (see, for example, 
Alebastrov et al., 1973; Kadyshevsky, 1980; Efimov and Seltser, 1971; 
Arbuzov, 1975). 
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The description of weak, electromagnetic, and also strong interactions 
within the quark model framework based on gauge theories with a sponta- 
neously broken symmetry obviously represents a qualitatively new step in 
understanding elementary particle phenomenon and their internal structure. 

However, at the present time it is impossible to say that the first 
approach is generally accepted and that the second way in the development 
of elementary particle theory loses its significance. 

Maybe that usefulness of the old (free of the above-mentioned difficul- 
ties) and of new weak interaction theories is revealed mainly in two limiting 
cases. Indeed, when the energy is not high enough for the production of 
intermediate particles (for example, W +--, Z ~ Higgs bosons, etc.) which are 
necessary in gauge theories, i.e., if the energy is small with respect to some 
limiting value E/, the weak processes must be described by the four-fermion 
theory. Contrarywise, when E ~ E t the gauge theory will play an important 
role in weak processes. Here E t is the value of energy at which new particles 
W-+, Z ~ etc. will be produced, if they exist. Of course, there has to exist a 
reasonable correspondence of both the theories at E - E r 

In the language of distance it means that starting from some small scale 
I k ~ 1 l E t  the growth of weak-processes cross section must be compensated 
by corrections given by the intermediate bosons. It is very interesting to 
show, at least approximately, the energy value E t (or the distance l k). 

It seems that in view of this aim, the investigation of four-fermion 
theory within the framework of the second approach is undoubtly interest- 
ing and can give a new information about weak interactions. For example, it 
is quite possible that on the basis of this type investigations a value of I k (or 
Et)  may be obtained. Moreover, recently great attention has been paid to 
the low-energy weak interactions. This is connected with the problem of 
neutrino oscillations and its consequences, and of the proton instability in 
the grand unified theories (see, for example, Fiorini, 1979). 

This section is devoted to construction of a gauge-invariant theory of 
weak and electromagnetic interactions of leptons in the stochastic space 
R4(.~ ) and to calculations of "weak" corrections to the AMM of leptons 
and to the Lamb shift within the framework of this theory. In this case the 
investigation of the terms of the S matrix is carried out by the methods 
elaborated in previous sections. 

Notice that in the stochastic (nonlocal) theory the concept of stochas- 
ticity (locality breaking) is characterized not only by the length l k ~ 1 lE t ,  
but also by a form of the distributions w ( b ~ / l  z)  (2) (the shape of a form 
factor or of potential) at small distances. It seems to us that in real physical 
processes apart from the value of elementary length an important role may 
be played by the form factors of the theory. This occurred especially in the 
study of the decay K ~ ~ #+~- and of the mass difference A m ( K  ~ - K~ in 
our scheme. 
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In the last cases our analysis of experimental data on weak processes 
within the discussed model shows that the elementary length of weak 
interactions is of an order of l k ~ 10-16 cm. and that the unitary limit is 
reached at energies El ~ 100-200 GeV depending on the choice of the form 
factor. Notice that it is quite possible that at these energies the unification 
of electromagnetic and weak interactions, which are described by the 
standard model of Weinberg and Salam, is achieved. 

7.2. Gauge Invariance for the S Matrix in the Nonlocal Theory of Weak 
Interactions. The expansion of the S matrix in powers of the normally 
ordered operators of the electromagnetic field A~,(x) and the lepton fields 
q'(x) has the form 

s = E  
t l ,m,I 

1 fa ' / , , . . ,  fa 'knfa 'p , . . ,  fd4p,,,fd4q, ... n !rn !l ! 

X fd'*qf,, ..... , , .(kl . . . . .  kn; Pl  . . . . .  Pro; ql . . . . .  qt):  A r t ( k , ) " "  A~ . (kn )  

•  ( j  = e, #, pe, p,) (37) 

The requirement of gauge invariance means that the coefficient functions 
F,, ..... , . ( . . - )  in the expansion (37) satisfy the following conditions: 

k ~ F , ,  ..... ~, ..... , . ( . . . ) = 0  

. . . . .  . . . . . .  ( 3 8 )  

Let us remark that each of the conditions (38) is fulfilled when other 
momenta in the function F,, ..... ~,.(..- ) are on the mass shell. The series of 
the perturbation theory contains three types of diagrams: diagrams with 
purely weak vertices, with weak and electromagnetic, and with purely 
electromagnetic vertices. Investigation of the last type of diagrams will not 
be carried out here because they represent gauge-invariant quantum elec- 
trodynarnics constructed by us in Section 5. Proof of the fulfilment of 
condition (38) for the diagrams with mixed weak and electromagnetic 
vertices goes simply. Indeed, in the considered four-fermion theory of weak 
interactions the Ward identity 

_ f ' f (p ,O)  ap~ 
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/ /  ,) " - \ \  
1/ 

o) 
b) 

Fig. 4. 

is valid since it is a consequence of the identities (17) and (10) at k =0: By 
definition: 

a 
d~,( k )lk_oF( q )= -~q F( q ) 

Here ~R(P) and F~(p,q) correspond to the diagrams of the self-energy 
(Figure 4a) and the vertex (Figure 4b), respectively. 

Proof of the gauge invariance in the form (38) in the series of perturba- 
tion theory is quite simple and is based on the identity (11). The diagrams of 
closed loops constructed by propagators of charged leptons are gauge 
invariant due to the d operation. 

Now let us proceed to investigate these diagrams (see, for example, the 
diagrams shown in Figure 5) in the series of perturbation theory. First 
consider the diagram represented in Figure 5a. In the momentum represen- 
tation the term of the S matrix corresponding to this diagram is given by the 
following expression 

ieG fd4pSp{f(~)(p,k)} 
F~ (~)(k) : V~- (2~)4 

~(2, = d~(k)SR( p )0~ 

where 

(39) 

\ 

al b) 

/ \ 
/ \ 

/ \ 

c) d) 

Fig. 5. 
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Taking into account the formulas (11) and (17) we get 

k~,d~( k )Sg( `6 ) = SR( ,fi + I~) - SR( `6 ) (40) 

From this it is easily seen that 

k~ ~ 2 ( k )  = 0 

By using the main property (40) for the d operation we can easily prove 
the fulfillment of the gauge invariance condition for the other matrix 
elements of closed charged loops, shown in Figure 5. The matrix element 
corresponding to Figure 5b is given by 

f o)#(p, k)  = d~(k)[SR(,6 + dl)O,~SR(dl)O~] (41) 

where p, k are the external momenta, q is the internal momentum over 
which one carries out integration. Making use of the identity (40) we obtain 

k , f~(3~ = [ SR( P + dI + I~ ) -- SR( P + d] I ] O~ SR( dt )Oa + SR( r + ]~ + dt ) O. (42) 

X [SR( q + ~)-- SR( q)]Oa = 

-- SR( `6 + q ) G  SR( 4 )O~ + Sa( `6 + q + k)GSR(q + d)O~ 
Elementary integration over q gives the following identity: 

k F  (3){ k ) = 0  

Now we consider the fourth-order diagrams (Figure 5c). In this case the 
terms of types f~2~ and f ~  have the form 

f~(4~.( k, q,. q2) = d.(k)[SR(q)O.SR(?t + ?7,)OBSR(?t + ? h -  q2)Or] 

From this we obtain easily 

k. f~,:~, = [s~(~ + ~ ) -  s~(~)] o.s~(4 + ~,)o~s~(~ + ~ , -  ~)o~ 

-~- SR( (t -~ ]~)Oa[ SR( ~] "]- (tl ~- ]~)-- SR( (t "-}- (]l)]OflSR( (t -~- C]' - q2)Oy 

+ s~(4 + f)o.sR(4 + ~, + ~)o~ 

x'[s~(~ + ~,-~2 + ~ ) -  s~(~+ ~, - ~2)] o~ 

= - sAq)o .s~(q  + ~,)o~s~(q + 4 , -  4~)o, 

+ SR(dl + I~)O~SR(dl + ?:1, + I~)O#Sa(dl + dl , -  d12 + I~)Oy 
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In the second term of this expression, the substitution q + k ~ q and 
integration over d4q give 

k r(4) =o 

Here finally let us consider one more diagram, shown in Figure 5d. The 
(2, 2) term f~,,~B (k t, k 2, P) acquires the form 

f,2,2,- ,~ E z, ~)O~Sn(~)] } (43) - - , , ,  { oosR( b + 

From this we see that due to equality (42) we obtain the following identity: 

(2,2 kl.k2~F~.2~ =0 

Thus, the algebraic relations we have found show that within our model the 
terms of the S matrix satisfy the condition of gauge invariance in the form 
(38) in each perturbation order. 

7.3. Calculation of the "Weak" Corrections to the AMM of the Leptons 
and to the Lamb Shift. In view of testing locality of the quantum theory, 
calculation of corrections due to the weak interactions to the quantum 
electrodynamical processes is always very interesting. In the case of an 
actual discrepancy between the local quantum electrodynarnics and an 
experiment, which is to be expected at very high energies, the "weak" 
corrections would contain, however, just the breakdown of QED. From this 
the conclusion may be drawn that local QED can be violated, and weak and 
electromagnetic forces can be equal in magnitude. It is quite possible that in 
this domain of energies the process of unification of weak and electromag- 
netic interactions starts. 

The present section is devoted to the calculation of corrections to the 
AMM of the leptons, and to the Lamb shift, and further to establishment of 
the lower bound for the parameter l which characterizes a domain of 
Unification of weak and electromagnetic interactions. 

7.3.1. The AMM of Leptons. In  the lowest order of G the corrections to 
the anomaly of leptons are given by two types of diagrams (Figure 6a) 
corresponding to both the diagonal and nondiagonal weak interactions, i.e., 
to two types of terms of the interaction Lagrangian Ew in (22). Within the 
framework of the nonlocal theory the diagrams of such a type were 
discussed in detail by Efimov et al. (1973). Therefore we shall not calculate 
in detail, and give only the main result. Hence in the stochastic theory the 
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o} t~l 

Fig. 6. 

terms corresponding to these diagrams may be rewritten in the form 

6 2 
r'~J)(p, q) = lim fd4kNf l3(k)O~S~(b '+l~)Uf(p ,k)SS(p+l~)O/~ 

a~O 2i(2~r)  4 

S -- S n , j = e, # (44) 

where the symbol 3 means the intermediate regularization procedure used 
above. Here p and p' are the external momenta of the leptons, p ' =  p + q 
and 

S ( ~ O ' + l ~ ) U ~ ( p , k ) S ( p + l ~ ) = - S ( p ' + l ~ )  Y~' 
m j -  p -  Fc 

q.y~ + 2 p~ 1 
+ [ V ~ ' ( - ( P ' + k ) 2 1 2 ) - V ~ ' ( - ( P + k ) 2 1 2 ) ]  q2 + 2 ( p . q )  m j - -~ - - l~  

(45) 

The function N~,l~(k ) corresponds to the neutrino loop and is given by (see 
below Section 8.2) 

1 1 -,~-ioo d v(~) _ 1 2 k 2 ) r  1 v01 ) 
N , , # ( k ) -  21r2 2 i f -a+io  ~ ~si---~( " 2i~_#+io o sinrra7 

(O<a<l )  (0</~<1) 

x (_ t2k~), r(2+ ~)r(2+ ~) 1 
~ i -  ~ -5~-  n) r(4+~+n) 

• [-2k~kaF(- n -~ ' ) -  g~ak2(2 + n + ~')F(-1- n -~)] 

(46a) 
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Here R e ( - ~ - ~ ' ) = a + f l < 0  and R e ( - 1 - 7 / - f ) = a + f l - l < 0  in first 
and second terms of (46a), respectively. Substituting (45) and (46a) into 
(44), integrating over dak, and assuming m]12<< 1, we get the terms giving 
the contribution of weak interactions to the AMM of the leptons: 

i 
['~(J)( q ) =  Fu(J) ( P, q )1/.=,.2=,,; = 2mj%"q"F(q2) 

('~)= F(0)= G2m2 
aj (2~r)412 B 

(46b) 

Here the quantity B is given by 

B =  , dn 2i f_.+,~ d~ si--l~ r(1-~lr(1 n) 

v ( - 1 - r / - - ~ ' )  V(- 'O-~ ' )  ( I [ (7 /+~ .1 (1+ , r /+~ . )+28  ] 
x F(4+f+n) sinTr(n+~') 

2+-)'1 + ~" {8+(r)+~.)[10+17(~ +~.)+2(~+~.)2]}+ 2+ r/+~" 
60 1+~+~" 

X 60(4+ 7/+ ~') (47) 

An integral of the type (47) will be investigated in Sections 8.2 and 8.3 
in detail (see also Appendix A). Shifting in turn the contour of integration 
to the right we can reduce this integral to the double series. The result of 
numerical calculations gives B ~ 3 for the form factor G- 

Thus, we suppose, as before, that the obtained "weak" contribution 
(46b) is of an order not greater than the experimental error. This makes it 
possible to establish the following restrictions for the parameter l: 

l ~>3 • 10-t9 cm for a e 

1~1.1 • 10-17 cm forau 

7.3.2. The Lamb Shift of Atomic Levels. If we restrict ourselves to an 
order of eG 2, as shown by Efimov et al. (1973), the dominant contribution 
to the Lamb shift due to weak interactions comes from the graphs (Figure 
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6b). The terms of the S matrix corresponding to these diagrams may be 
presented in the form 

S(2'2)(x, y ) =  - i: A~,(x)l-I~,.(x - y ) A . ( y ) :  

I-I~,.(x) = 1 fd4qe,q...fi~.(q ) 
(2~r) 4 

Calculating (I . .(q) we made use of expressions (43) and (46a) for 
f (2,2)/ n . ~ . , q . k )  and N~t~(k ), respectively. Thus, in the stochastic theory the 
quantity II . . (q) has the form 

eZG2 f f d4p d4k ~2,2)t 
l~I""( q ) = 2(2~r )8 Sp ( p, 

_ eZG 2 f f d 4 p d 4 k S p  
2(21r) s 

• [ (2s(b + + + 

• S ( p  + I~+ O ) [ d . ( q ) S - ' ( p  +/~)] S(/~ + l(:)O.S(lO) 

- S( ,6+ l? : ) {d . ( - -q ) [d . (q )S- ' (p+/~)]  } S(/~ + l~)O.S(p) 

- S ( f f +  I ~ ) O ~ S ( f i ) { d . ( - q ) [ d . ( q ) S - ' ( p ) ] } S ( p )  

+ 2S( p +/~) [d . (q )S - ' (  ,~ + l~ - q)] S( p + fc - ?I)O.S( p - O) 

• [ a . ( -  q)S-'(b)]s(b)+2s(p + ~) 

•  [ d . ( -  q ) S - ' (  ~ + 0)] 

Passing to the Euclidean metrics and using the generalization of Feynman's 
parametrization we get after some calculations 

fI~,~(q)=(q~q~,-q2&,~)H(q 2) 

where 
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where 
8 I I ( q 2 ) = - ~ i r ( - l - n - p - ~ - X )  fd 'p (p+ q)Z[q2 + 2 ( p - q ) ] - '  

[ 211 + r/+ ~" + t~ +X m2y +m2( l_y )_ (p+q)  x ~ _ ~  

Here 

8 - -  - -  

m2y 1 l+n+~+o+x} 
-- 1--x+m2(1--y)--P2] (48) 

- ~ - i ~  o ~ 1 ~ a  ~- 1 f a~ ~(~) ~2~_ r - ~  , ~ .  ~ (~)  r - .  
8~r5 2i J_,~+io~ -~ sin~r~" 2i J_#+io~ ar/sin~vl 

X ~ i J _ v + i ~  Psinrro 2i -~+i~ sinvrxl2X 

F(2+ ~')F(2+ v/) 1 
X 

F(4+ "O + ~')F(I - ~')F(1 - r/)F(I - p) F (1 -  X ) F ( - 2 -  7/- ~'- p) 

I 

X #dxdy(l  - y)-Xy-3-,7-;-o{ [3F( -  1 - ~ - ~ ' ) - 2 F ( -  2 -  r / -  ~') 
0 

+ x F ( - 2 -  T/--t)]F(--2-- r t - - t - -P)  

+ x Y ( - 2 -  v l - t ) F ( -  1 -  ~/- ~'- p))x2+n+~(1- x)" 

Using the identity (28), we obtain 

I-[ ( q2 ) = -~i 3 . F( - Tq - ~ - X - O ) fo'dz f d4p( p + q )2 

[ m2y +m2(l_y)_(p+qz)2_q2z( l_z)]  "+'+~+~ X i - x  

]2+n+f+o+~ " 
=3foldZ 1-xmZY +m2(l-yl -q2z( t - -z)]  

{ [ m2y +m2(1--y)-q2z(1--z)] x - 2 r ( - 3 - n - ~ - . o - , X )  1--x 

+ qZ(l-- z ) 2 r ( - 2  - n -  ~ -  o -  x)~ / 
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The corrections to atomic levels produced by the nuclear field vacuum 
polarization are given by the following formula: 

AE-- 8Z4a2m2e dl-I(q2) q2=O 
n~ Ry - - d q  2 (49) 

where 

Ry = I ot2m e 

The calculation of dI-[(q2)/dq2lq,-=o is performed easily. Assuming m212 << 1, 
we get 

  ,q2)q2 = 2o 2(, 
dq 2 o-" 5 qr5/4 m~, + (50) 

where 

. . . . . . . .  

i=, zta-v,+i~ smcrxi r(1 x,) sinqr(x,+x2+x3) 

X 
r(2+ x, )r(2 + x2)r(x + x3 ) 

(3+x j  + x  2 )F (5+x  I + x  2 + x  3) 
I ' ( - 2 - x , - x 2 ) F  ( - 2 - x , - x  2-- x3) 

X (318+3(x,  +x2)  ] +(1 + x ,  + x  2 + X3)[9+.X" 3 +3(X I +X2)  ] 

Substituting (50) into (49) and taking into account that m~ >> m~, we obtain 
the contribution to the Lamb shift for 2S~/2 -2Pt/2 in the form 

Z 4 
2 cr--~l 4 a3G2Ry d (51) AE'(2SI/2 - 2P1/2) = 5 

where the constant d - 1 for the form factor v.,. (9). 
The experimental value of the Lamb shift 

AEcxp(2St/2 -2P~/2)  =(1057.912+-0.011) MHz 

due to the data analyzed by Brodsky and Drell (1970), Scadron (1980), is 
explained by local quantum electrodynamics. Therefore we get as above 

I ~ 2 X  10-16 cm 
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8. SOME CONSEQUENCES OF NEUTRINO OSCILLATIONS 
IN THE NONLOCAL THEORY 

8.1. Introduction. Many papers have appeared recently in which the 
problem of neutrino oscillations was considered within different approaches 
(see, for example, Bilenki and Pontecorvo, 1980a, b; Bilenki et al., 1980; 
Vuilleumier, 1979; Barger et al., 1980; for earlier work see the reviews of 
Bilenki and Pontecorvo, 1978; Wachsmuth, 1979; Morrison, 1980; and for a 
more popular presentation see Thomsen, 1980; Sutton, 1980; De Rujula and 
Glashow, 1980). The possibility of neutrino oscillations was first considered 
by Pontecorvo (1968): he assumed that the oscillation may appear if besides 
the usual weak interaction there is another interaction which does not 
conserve the lepton number. Such a picture is similar to the oscillation in 
the system of neutral kaons. Pontecorvo showed that massive neutrinos 
might change their identities during time evolution. A particle which is born 
as an electron neutrino in a beta decay may periodically behave as if it were 
a muon neutrino or a tau neutrino. 

Many recent papers (see, for example, Cheng and Ling-Fong Li, 1980; 
Kang et al., 1980; Yanagida and Yoshimura, 1980, and references therein) 
devoted to the problem of neutrino oscillations deal with the unified theory 
of weak and electromagnetic interactions. Thus, in addition to the standard 
hypothesis of lepton-quark analogy, in these works a new conjecture is 
proposed that leptons, as the quarks, are mixed. In such a theory the 
oscillations ~e ~ ~'~ = u, appear. 

Possible indications for neutrino oscillations have been obtained in the 
beam-dump experiments at CERN (De Rujula et al., 1980) and in the 
experiments with reactor antineutrinos (Barger et al., 1980; Reines et al., 
1980). A number of experiments searching for neutrino oscillations stimu- 
lated recently interest to the question as they seem to give some indications 
for nonzero neutrino masses. A direct experiment of Lubimov and co- 
workers (1980) on measuring the ~e mass from 3H decay gives the mass of 
the electron neutrino as between 14 and 46 eV, and most probably to be 
36-'-10 eV. The results of Reines et al. (1980) gave no direct implication for 
the neutrino mass, although they imply that the difference in mass between 
the two basis states lies in the region of 1 eV. It is worth noting that the 
recent developments of grand unified models nicely accomodates finite 
neutrino masses (Barbieri et al., 1980a, b; Gell-Mann et al., 1979; Georgi 
and Nanopoulos, 1979; Witten, 1980). 

Thus we believe that a neutrino oscillation mechanism does exist in 
Nature and we will expect precise experiments on the properties of neu- 
trinos. 
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Our aim here is modest and consists only in considering this problem 
from the viewpoint of stochasticity of space. We believe that due to the 
neutrino oscillation mechanism there exist mixed states of neutrinos which 
give nonorthogonality between neutrinos, say, v~ and v~,, (velv~,)v~0 (v~ 
oscillation are not considered). In our previous paper (Dineykhan and 
Namsrai, 1975) such a possibility was considered and it was postulated 
there that the difference in behaviour between v~ and v~ is caused by internal 
properties of these particles and depends of the nonlocal effects of weak 
interactions. For example, 

v~,=v~ + f v = v ~ - ( 1 - e p ) v  (52) 

wheref (or  q~) is some parameter which may be connected to a mixing angle 
and a value of mass difference of neutrino states, and v is a massive 
neutrino (basic state) which possesses properties of both the v e and v~, 
neutrinos. In the representation (52) the transition propagator between ve 
and vu has the form 

(0[T( , t ,~(x)~ , (y) )10) - -e0 |  y) (53) 

where we put @ ~ ( x ) =  | since the v neutrino possesses the property 
of v e. 

If the neutrino mixing is assumed, the exotic decays ~ ~ ey, /~--, 3e, 
K---o~eTr +-, K ~  etc., are in principle, possible. Notice that these 
decays are forbidden by the usual theory. These processes appear in higher 
orders of the perturbation theory. The present section is devoted to the 
investigation of these decays within the framework of our approach. It is 
shown here that if the parameter l for the weak interactions is of an order of 
/--10-16 cm and if the neutrino mixing takes place, then the probability for 
these decays is close to the experimental upper bounds (see, for example, 
Bricman et al., 1980; Fiorini, 1979). In this review, for example, we will 
consider the decays/~ ~ 3e and K ~ ~/~e in detail. 

8.2. The p-~3e Decay. Within the framework of our model of weak 
interactions the probability decay is determined by diagram shown in 
Figure 7a. Before we proceed to estimating corrections from these diagrams 
to the probability of decays # --* 3e and K ~ ~ ~e, let us consider diagrams of 
the type of neutrino-neutrino, neutrino-lepton, and lepton-lepton loops 
(Figure 8a, b,c). Here we investigate one of these diagrams, say, the neu- 
trino-lepton loop corresponding to the diagrams shown in Figure 8b. Its 
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matrix element has the form 

1 fd4kSp{ iSO. (m+ I~ + jO)OB) 
[ I , ~ B ( p )  = (2,n.)4i 

X 
Vo(-k~r -) v.,(-(~ + p//~) 

2 - k Z - i e  m 2 - ( k  + p - i e  

After the standard calculations we have 

1-I,~#(p)-- 1 1 f-o-,~d~V(~)(m:l:)~ 1 
2,n. 2 2i -o+i~  sin~r~" 2i 

( 0 < o < l )  

X [ - v - i ~ d v l  v(~/) (m2lZ) n l 
._~+,= s , n ~ . -  - r ( 1 - n ) r ( 1 - t )  

( 0 < v < l )  

• [ ( - 2 p ~ p a  + g,ijp2)x(1 - x ) F ( -  7 / -  ~') 

+ g , , t f ( - 1 - n - ~ ) ( m Z - p Z x ) ( 1 - x ) ]  (54) 

We notice that the neutrino-neutrino loop (46a) in Section 7 is obtained by 
substituting m = 0  in expression (54). 
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al b) 

~J 

c) 

Fig. 8. 

So, by definition (53) the matrix element corresponding the /~ ~3e  
decay has the form 

G 
M ( g ~ 3 e ) = ,  -~- (~O.g)N~(q)(~O~e) 

where N.r is the neutrino-neutrino loop determined by (46a). Then the 
square of the matrix element equals 

G4~2r 2 
IMI 2 -  4[(k,k2)(kok3)+(kok2)(k,k3) ] (55a) 

spin ( ~ l )  4 

where 

k 0 = k I + k 2 + k 3 

c 2i sin2-   
(0</3< 1) 

(55b) 

1 G4~b2r 2 
W ( g ~ 3 e ) =  192 ~ m~ 

In the expression (55a) for the square of the matrix element we take into 
account main terms of the order of (G2/12). After integration over phase 
space of the electrons and averaging over the muon spin we have 
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The  probabi l i ty  branching  ratio of /z  ~ 3e to ~ ~ evf, const i tutes  

B ( # - - . 3 e ) =  W ( / z ~ 3 e )  _ G2~2c 2 
W(/z ~ e~r ) 4(~r/) 4 

(56) 

where 

[ 2,3 for v = v s 

c = ] 1 , 4  for v = v  b 

~0 ,4  for v = v~ 

Here  v s, v b, and v I are determined by  formulas  (9), (27), and (31), 
respectively, and Iq~1~<0.055 (see Lee et al., 1977). Assuming ~ 10 -2  and 
1 - 2 •  10 -~6 cm we get 

t 
l . 3 5 •  10 -8 for u s 

B(~ t - , 3e )~<  4 .9X 10 . 9  for v b 

3 . 9 •  -1~ f o r v  I 

(57) 

8.3. The  g ~ --. lae Decay.  In  the second order  in G the decay K~ ~ ~e  
is described by the d iagram in Figure 7b. The term of the S matr ix  
corresponding to this d iagram can be rewritten in the form 

i~/2fxN^ ~ ( p - ) F ( p - , q ) e ( p +  )(pkcosOcsinO,. (58) 

where 

F( p _ ,  q)----- ~ fd4k I-l~a(k)O~ 
(2~')4i 

mN+ + mN+ -f_ 
x o 8 

r n ~ - - ( k + p + ) : - - i e  m ~ - ( k - p _  ie 

X V , , , ( - ( k + p + ) 2 1 2 ) V , , , ( - ( k - p _ ) 2 [  z ) ( m u n r o  h ) 

k Here  1-I~a( ) corresponds  to the neu t r ino -nuc leon  loop considered in 
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Section 8.2. The hadron current is chosen in the Cabibbo form. After 
tedious but elementary calculations we get 

F( p_ ,  q ) =  - mNgt(l -- ys)--------~l A 
16rr4/2 

where 

A = . ,  :~+i~ Tsin~ry 2i ' t -B+i~  sin~r~" 2i ,~+i~ s i n  r 

X v ( - 1 - r t - ~ ' - y )  r ( 2 + ~ ) r ' ( 2 + n ) r ( - l - n - ~ )  (59) 
sinTr(y + 7/+ f) r ( 1 - n ) r ( 1 - f ) r ( 3 +  ~ +~) 

As above, after displacement of the contours of integration to the right we 
obtain (see Appendix A) 

- 2  ~r I r - B - i ~  .~ v ( f )  1 A -  ~7~_~+~= sm,~f ~'(1+~)(2+~) 

• ~ [ v ( n ) v ( - - 1 - n - - ~ ) - v ( n - ~ ) v ( - - 1 - n ) ]  (60) 
It ~ 0  

Now the matrix elements (58) acquires the form 

2 
�9 m N _ 

cos O~slnO~q~ l~412Aq)K[t~ ( p_ )Oe( p+ )] 

where 

mZ. IAZ 2 IM[2---2m~: 1 - m G I  g 

G 2 mum N 
g = f,~NA-~-- COS 0~sin 0~ 16~r4l 2 

Integration of the decay probability over the phase space of two leptons 
gives 

,.2 GA 
m K  P. 9 2 �9 9 ~" ,.., 

W( K ~ ~ /~e)= W 1----;-  | A-cos Ocsln-O c --~ (61) 
rn k ] l 4~r 1287r8 
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where  s in0c=0 .23 ,  f 2 N n / 4 ~ r = l O . O •  (see, for example ,  Ebel,  1970; 
Nagels  et al., 1976), ~ ~ 10 -2 ,  a n d / - - 2 •  10-16 cm; 

A =  

- 1.8 for  v = v s 

- 2 . 7 •  10 - I  for v = v  b 

- 2 . 1 0  -2  for v =  v I 

(62) 

Thus,  the b ranch ing  ra t io  of  this exot ic  decay  in our  mode l  is 

1 . 2 •  -8  for v = v ~  

W ( K  ~ ~ e ) < j l . 4 •  for v = v  b 

B -  W ( K O - ~ a l l  ) [ 7 "4 •  for v = v  1 

We see that  the exot ic  decays  ~ - - , 3 e  and  K ~ ~ / r e  d e p e n d  s t rongly  
f rom the form factors  of  the non loca l  theory.  Our  results  together  wi th  the 
ca lcula t ions  by  Cheng  and L ing -Fong  Li (1977) and  the exper imen ta l  uppe r  
b o u n d s  [Bricman et al., 1980 (Part ic le  D a t a  Group) ]  are summar ized  in 
Tab le  I. These  numer ica l  ca lcula t ions  are  p resen ted  for a pure ly  i l lus t ra t ive  
purpose .  These  are impor t an t  in a sense that  they pe rmi t  one to es t imate  a 
p a r a m e t e r  of  mixing and the value of  e l ementa ry  length  l. The  in t roduced  
p a r a m e t e r  ~ is connec ted  to the mixing  angle and the mass  di f ference of  
neut r inos  vl and  v 2 (or  heavy lep tons  N I and  N2) of o ther  mode l s  of  weak 
in terac t ions  by  the fo rmula  

~ sin qgcos q0Ami ( i  - ui, iV/) 

TABLE I 

Our Results of Experimental 
Process calculations Cheng and Li upper limits 

---, 3e 1.3 • 10 -s  v = v s 10- t2 1 .9  • 10 - 9  

4.9 • 10 -9 l) ---- v b 
3.9X 10 - j~ v = v ~  

K ~ --* ~e 1.2X 10 -s  v = v s 10-to 2X 10 - 9  

1.4X 10-1~ v = v h 
7.4X 10 -13 v = v  I 

K~ ~/t+/~ - 1.2X 10 -6 v = v  b - -  (9.1 -+- 1.9) X 10 -9 
6.7 X 10 -9 V ---- V! 

A m ( K ~ 1 7 6  5.10tlh sec - I  v = v  b - -  0.5• 10tOh sec -I  
1.10~th sec -I  v = v  I 
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9. NEUTRINO ELECTROMAGNETIC PROPERTIES IN 
NONLOCAL (STOCHASTIC) THEORY OF WEAK 

INTERACTIONS 

In the last years great attention has been paid to the physical properties 
of neutrinos. This is connected with the problem of neutrino oscillations 
and its mass, and astrophysical consequences (Faver et al., 1978; Schramm, 
1979; Schramm and Steigman, 1980; this problem has been discussed by 
many authors at the Neutrino 1979 Conference), and also with the rapid 
development of neutrino experiments carried out at CERN, Caltech-FNAL, 
Serpukhov, etc. (see, for example, Busser, 1980; Winter, 1979; Baltay, 1979; 
Arbuzov, 1975). 

As usual, the neutrino is considered as a weak-interacting particle with 
zero mass and without an electric charge. Therefore among the electromag- 
netic characteristics of neutrinos the only nonvanishing quantity is its 
charged radius r~. Possible experiments on measuring the charge radius of 
the neutrinos have been pointed out by Andryushin et al., 1971. 

However, it seems that the neutrino mass is not zero (see Section 8). 
Then the neutrino may possess the magnetic moment a~. Recently, magnetic 
moment of a massive neutrino has been discussed by Fujikawa and Shrock 
(1980). 

Starting, with the analysis of experimental data on inclusive reactions 
~,(~)+N--,~(~7)+anything and u ~ - e  elastic scattering, Bardin and 
Mogilevski (1974), Kim et al. (1974), and Arbuzov (1974) have investigated 
the electromagnetic properties of neutrinos and calculated the correction to 
the cross sections of these reactions due to Feynman diagrams involved in 
one-photon exchange, and obtained restriction on the charged radius and 
magnetic moment of the neutrino. 

The contribution due to the one-photon exchange calculated by these 
authors is called electromagnetic, although, as is known, the charged radius 
and magnetic moment of the neutrino must appear due to effects of the 
weak interactions. The Calculation of these quantities in the usual theory of 
weak interactions meets difficulties because of divergences in the S-matrix 
elements. 

The present section is devoted to the calculation of contributions to r~ 
and a~ within the framework of our approach formulated in this paper. In 
Feynman diagrams of the order eG 2 giving the corrections to r, and a~ there 
are closed loops constructed by propagators of the charged leptons and 
neutrinos for calculations of which it is necessary to apply the method of the 
stochastic theory. 

In the nonlocal (stochastic) theory of weak interactions the electromag- 
netic interaction of the neutrino, say, the muon one, in the lowest order of G 
is given by the following Feynman diagrams (Figure 9): 
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# 

�9 ~ ~ ~_ ~_~__ 
k*q ----p p-~p,q 
a) k,, k 2 

p ,u 

- ~  .,.~_ _2  ~_ 2_  

y v~ 
% 

c) dl el 

Fig. 9. 

The matrix elements of the vertex functions corresponding to the 
diagrams shown in Figure 9 between two-neutrino states which are used for 
the calculations of the electromagnetic form factors of neutrino have the 
following general structure: 

where 

M =  ieu~( p') ( y.F,( q2 ) + io~pqPFR( q 2 ) ) u.( p ) 

1 2 2  F,(q2)=-~r~q , F2(0) = a~, q = p ' - - p  

(63) 

Here r] is the mean-square charged radius of the neutrino and a. is its 
magnetic moment in the units of electron Bohr magnetons. 

In order to calculate the contributions from the diagrams shown in 
Figure 9 to r~ and a. we shall investigate them separately. First, let us 
consider the lepton loop (Figure 9a). The term for the S-matrix correspond- 
ing to this diagram has the form 

G I M, = ie--~ff.( p )O.u.( p )K.a( q )Ar q ) (64) 

where the K.t~(q) in the stochastic theory is given by 

K d4k ^ 
~a(q)= f ~ Sp{ O~S(k + gt)U~(q, k)S(l~) } 
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Here 

Ui3( k, q)= - da( q )S-I( l~ ) 

On the other hand, taking into account the identity (17) for the d operation 
we have 

K.a(q )= f~Sp(Ood , (q )S ( l~ ) )  

By definition 

1 v . , ( -  k~t ~) 1 
d#(q)S(l~)= m_l~_Ciyi3 m--fc + m--fc--~ 1 

• [v ( - (k  + q)2/2)-v(-k212)] 0Y. q2 

After some elementary calculations we obtain the gauge-invariant 
expression for K~a(q): 

1 
K~/~(q) = ~ 2  ( q.qt~ -- q2g.~ )I~( q 2 ) 

where 

r(1-t)  
(0<~<1) 

• f 'a~(1- ~ ) ' -~ [1 -  q~ ~(1- x)]~ 
Making use of the identity 

r ( -  ~ ' )=  - ~ / s i n  ~ r ( 1  + ~) 

we have 

= ~ - ~ - i o o  d. v ( ~ )  1 
/(-(q2) ~f~a+ioo ~ [ s i n ~ t ]  2 F(1-~')F(1 +~)  

[ = fo 'dx(1-x)x  v'(O)+logm212 +log m 2 ( l _ x )  
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Here 
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fo'dx x(1 - x)log(1- x)= r(2)r(2) 5 I"(4) [ ,~(2)-~(4)]-  36 

The first diagram considered gives a contribution to the mean-square 
radius of the neutrino only: 

r~"=6~F""(q2)3q 2 q2 =o - ~-G 2~ "21 [5g - v ' ( 0 ) - l o g  m212] (65) 

Assuming, as a b o v e , / ~ 2 •  10 -16 cm we get 

t 1 X 10-33 cm 2 for v = G 

r~- -  0 .9•  10-33 cm 2 for v = v  b 
[ 1.1 X 10 -33 cm 2 for v = vl 

We see that the contribution from the diagram (Figure 9a) to the mean- 
square radius of the neutrino is of the order of 10 -33 cm 2. 

Now we turn to discussion of the vertex diagrams. There are only eight 
diagrams for each neutrino v i (i = e,/~). Among them there exist diagrams of 
different structure, for example, diagrams, shown in Figure 8b-e  with the 
calculating of which we shall start. The terms for the S matrix correspond- 
ing to these diagrams are 

rlo( p, q ) = N. O~[ d o( - q )S'")( l~ , +/3)] 

X 0 8 S p (  OaS(e)( 1s -{'-/~2)OBS(')(/s 

r2~(p,q)= N.GS~)(~, + P) 

•176 +I~2)]Or (66) 

F30(p,q)= N.O,,S<")(l~z-O ) 

• O/3Sp { 0,~[ do(-  q)S'e'(l~, +/~2)] O~ S'")(/~, + p)}  

F4o ( p ,  q ) =  N. O,,S'~)(/~2 ) Ot~SP { O,,S'~'( l~, + l~ 2 )Ot~ [ d o ( -  q )S'")(/~, + P )]} 

[ d4kl [ d4k2 
N = j (2w)4i j (27r)4 i 

respectively. 
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Let us consider the first expression of (66). We are interested in those 
terms only which give contributions to r, and a.  in the limit q2 ~0 .  The 
structure of the type (63) is obtained by the usual way. After tedious 
calculations we have 

where 

F,.(p,  q ) -  --L---1 l[7oqZF(')+i%,,q'~m.F~') ] (67) 
16rr4l 2 3 

F( t' = 9(~', rl) (2(3 + 2r /+  2~ ' ) r ( -  I - n - g')+ r ( -  n - ~')[] - (1  + 77 + ~')] } 

F f ' = O ( t . n ) r ( - n - ~ ' ) [  l + n + t 2  ( 1 + 2 ~ + 2 t ) - 1 3 - 6 7 / - 6 ~ ' ]  

Here 

r f-B-iOOd~V(~) 1 f-v-,OOdn v(n)  v ( - 1 - n - ~ ' )  
P(~'71)=~J_fl+io o sinq'l'{ 2i._.r+io o sin~r~l sin~r(~/+~') 

• r '(2+ n)F(2+~)  1 
r ( 1 - ~ ) r ( 1 - ~ )  r ( 4 + n + ~ )  

Similar calculations give the following structures for F4p ( p, q) and FRo( p, q): 

where 

and 

F4p(p, q ) _  I 1 [yoqZF(4 ) + ioo,.q,~m.Fz(4)] 
16~-4l 2 6 

(68) 

F/4) = O(~', 7/)( [ - 2 + 2 ( 1  + 7/+ ~)] F ( -  r / -  ~ ' ) -  1 0 F ( -  1 - r / -  ~')} 

F~ 4) = p(~', 77)[-  1 0 -  17(1 + 71 + ~) +4(1 + ~/+ ~.)2] F ( -  v / -  ~') 

F2,(p,  q ) - l[7oq2F(2)+i%,~q'~m~F2(2) ] 
167r4l 2 

(69) 
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It is seen easily that by substitution of the variables of integration the 
third term can be transformed to the second term of the expression (66). 
Thus, in our case of q2 ~ 0 we get 

F3o(P,q)=Fzo(P,q) 

Now we carry out the numerical calculations for the concrete form of 
the function v(~'), say, for v,, which is determined by (9). The results of a 
displacement of the contours of integration in (67)-(69) give 

F(z) = -0 .18 ,  F2 m =2.56 

F(4) = - -  0.28, F (4) = 6.7 

F(2) = - 0.05, F( 2~ = 1.07 

(70) 

Finally, we shall consider the expressions (67), (68), and (69) together with 
(70). Then 

Mo = ~(F u +2I"2 o + F4p)=8[yoFl(q2)+ i%,,qam,Fz(q2)] (71) 

where 

1 G 2 
Fz(O ) -  161r412(f,+2fz+ f4 ), 6=ie~- 

Fl ( q 2 ) _  q2 
16~r412 (RI + 2 R  2 + R4) 

Here 

Therefore 

fl = �89 Fz~ = 2.56/3,  f2 = F~2~(0) = 1.07 

f4 = ~Fz(4)(0) = 1.1 

R 1 = / ( - - 0 . 1 8 ) ,  R 4 = ~(--0.28),  R 2 = --0.05 

r2Z~=(r22~)=4F,(q2)G 2 q- 

6 2 
a., =4m~jme-~-F2(O ), 

in the units of electron Bohr magneton. 
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The recent experiments and the analysis of the data [see, for example, 
Bardin and Mogilevski, 1974; Kim et al., 1974; Arbuzov, 1974; Daum et al., 
1978; Bricman et al., 1980 (Particle Group Data)] establish the following 
restrictions for a~, (r,Z), m , ,  and m,, 

[a,,l~<10 -7, m,, ~<0.57 MeV 

2 < --31 ( r ~ ) ~ 1 0  cm 2, m,, ~<6• I0 -s  MeV 

Then, our result gives the following restrictions: 

]a,,,l~<2X 10 -15 

1a~..1~1.75 X 10 -19 

and 

( r 2 )  ~,~ 1 X 10 -33 cm 2 

in the assumption l ~ 2 X  10 -t6 cm. If (14--- < m,, ~<46) eV due to Lubimov et 
al. (1980), then 

4X _v10-2~ <la, ,  1~< 1 . 3 4 X ~  10 -19 

We notice that in our model the vertex diagrams, shown in Figure 9b-e,  
give small contributions to (r,~) of an order ( 1 0 - 3 7  10-38) c m  2 with respect 
to the diagram 9a. 

10. STUDIES OF THE DECAY K O ~ #+/x- AND K O- AND 
K ~  MASS DIFFERENCE WITHIN THE NONLOCAL 

(STOCHASTIC) THEORY OF WEAK INTERACTIONS 

10.1. Introduction. Some time ago the rare decay K ~ ~/ l+ff  - has been 
observed [see Bricman et al. (Particle Data Group), 1980], branching ratio 
of which coincides, in order of magnitude, with the unitary limit (Sehgal, 
1969; Quigg and Jackson, 1968) 

w ( K ~  - ) 
B~,( K ~  -'-* /'t + /x - ) = ~i/-( K 2  Z ~ ) -  ) ~>6X 10-9 

This process occurs essentially because of electromagnetic interactions 
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(through two-photon exchange). It is interesting to notice that the well-known 
so-called GIM mechanism (the hypothesis of existence of the charm quark) 
started from the investigation of this process within the standard model of 
electroweak interactions (Glashow et al., 1970). 

The calculation of "weak" corrections to the B(K ~ --,/~+/t-) and the 
mass difference of K ~ and K ~ mesons within the usual nonrenormalizable 
theory (the four-fermion theory and the theory with intermediate bosons) of 
weak interactions gives a very small value of the cutoff momentum A of an 
order of few GeV. This contradicts the value of the natural cutoff A ~ 102 - 
103 GeV for the growth of weak interactions (see, for example, Ioffe, 1973). 

In this section we shall show the problem of suppression of the order 
O(G 2) in decay K ~ ~ /~+#-  and mass difference Am(K ~ - -K  ~ may be 
solved within the framework of the stochastic (nonlocal) theory of weak 
interactions without introducing the fourth quark. 

In our model contributions of nonlocal interactions to the K ~ --./z+/~ - 
and the Am(K ~ -- K ~ arise from the diagrams, shown in Figure 10. 

10.2. The K ~ ~ / ~ + ~ -  Decay. K ~ --,/1+/~ - decay in the second order in 
G is described by the diagram shown in Figure 10a. The corresponding term 
has the form 

�9 G 
M(K~ ) : , (2 fKu ,  ~ f f ( p _ ) F ( p _ , q ) t t ( p +  )~<cosO~sinO~ 

where F ( p _ ,  q) was calculated in section 8.3. Thus the branching ratio of 

ol 

n p A 
KL K s 

] 

b) 

Fig. 10. 
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this decay is 

W(K~ - ) 
B ( K ~  --, p.+/,- ) = W(KO ~ all ) =1.7A2 • 10 -s  (72) 

where 

( 2 m 2 )  2 G41 4 rn~ m21287r 8 f~UA4~r W( K ~ -- t~ +/t- ) =  -~- 1-  m-----~ AZc~ 

and A is given by (59) and (60). Substitution of numerical value (62) for A 
into (72) leads to the contribution 

I1 .25X 10 -6 for v =  v h 

B ( K ~  ~/z+/z- ) = [ 6.7 • 10-9 for v=v, (73) 

Namsrai and Dineykhan 

and 

where 

Z( p)= G2sin20,.cos20,.II,,( p )II ~a( P )Ha(p) 

d4k 
Fio(p): fXNAf (~).iSp{S(I~)O~S(E + P)Y,}, 

riga(p)= f ~ S p { S (  d4k l~:)O~,S(l~:+~)Oa} 

which is determined by the expression of type (54). In the case m~t 2 << 1 the 
expression obtained for I-I,,p(p) on the mass shell of the K-meson acquires 
the form 

m~. l 
(75) II,,a(P)=g,,13rn212 4,n.2 c 

where c is given by (55b). 

(74) 

S- -S  R 

10.3. The Mass Difference of K ~ and K ~ Mesons. Let us find now the 
energy operator for the transition K ~ into K ~ A typical diagram of the 
order G 2 giving the contribution to the Am(K ~ - K  ~ is shown in Figure 
10b. The expression corresponding to this diagram is 
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The calculation of functions IIj(p) ( j =  a, t )  is similar. As a result 

I-[j(p)--fKNAmNPJ 1 [-,-~O~d~ v(~) 12~1 [-'~-,O~d_ v(n) 12,~ 
4~r 2 2i J-~+i~ sinlr~" 2i J-~,+ioo ,I sinlr'o 

r ( - , 7 - ~ )  
• r ( i :TK~-  ~) f0 'd~x-~(~- ~)-~[m~- p~(~- ~)]~+~ 

The contour integration gives 

{ J o i n ]  nj(p)=-l~N~ mNpj v'(O)+l+logm~12+ tdxlog 1 -  - x ( 1 - x )  
4~- 2 

~i f-a-i~ '~(~')v(-~') l (76) 

Here it is necessary to carry out renormalization in the strong coupling 
constant f~NA" After such renormalization the expression (76) acquires the 
form 

mNPj~ 

Substituting (77) and (75) into (74) we obtain the following expression for 

f,~NA 
-) 

Am( K ~  K~ - a2sin2Occos2Ocm~-~-~ mK (78) 
(2,~) 6 

or  

i •  for v = v  s 

A m ( K ~ 1 7 6  = • lOlth see -I  for v = v  b (79) 

X lOath sec -I  for v = v  t 

We see that in the case of our choice of form factors vs, v b and v t the 
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contributions (79) calculated are large with respect to the experimental value 
of Amexp=0.5•176 sec -1. However, by some other choice of form 
factors this inessential contradiction between the theoretical calculations 
and experimental data for Am(K ~  K ~ in our model may be easily 
eliminated. Table I presents the contributions calculated within the nonlocal 
theory and experimental data on K~ - and the mass difference 
Am(K ~ - K ~ for different form factors of the theory. It should be noticed 
that in the real physical processes, apart from the value of elementary 
length, an important role may be played by the form factor of the theory. 

Therefore, the problem of suppression of rare decays ( K ~  - ,  
K +--. ~r+~,~, etc.) connected with the neutral currents A S = I  and also 
calculations of the physical quantities of the order G 2 (for example, the 
mass difference of K ~ and Ks ~ mesons) may be solved within the framework 
of the nonlocal (stochastic) theory of quantized fields. 

11. APPENDIX A. CALCULATION OF THE CONTOUR 
INTEGRAL 

In this appendix we give the method of calculation of the contour 
integral, say, for example, 

A=~Tf-.f-iOOdyD.(y) l f-~-ioo 19(~) l ) 
zs J - v + i ~  slnrry 2 i a _ B + i ~  d~'sin~rf 2--i _~+i~  sl=nTr~ 

(0< a,fl ,) ,< 1) 

X v ( - 1 - B - y - ~ ' )  F(2+~ ' )F(2+~/)  F ( - 1 - ~ / - ~ ' )  (A1) 
s in~r(y+~/+~' )  F ( 1 - ~ / ) F ( 1 - ~ ' )  F(3+~/+~ ' )  

First we displace the contour 7 to the right. Then the poles will appear at 
points y = 0 , 1 , 2 , 3  . . . .  and y = n - ~ l - ~  ( n = 0 , 1 , 2  . . . .  ). In the first case 
(y - -0 ,  1,2 . . . .  ) it is necessary to displace one of the other contours, say, fl 
contour. The calculations of residues at points ~" = 0, 1,2 . . . .  and ~" = N - ~/ 
(N =0,  1 . . . .  ) give 

A = 2  ~__ f - . . -  i~dr I v( ~l) 1 
2 iJ- . .+i~  sin27r~ ~ ( l + , ) ( 2 + r t )  y~ v ( k ) v ( - 1 - k - ~ l )  

k=0 

(A2) 

After similar calculations of residues at points ~" =0,  1,2 . . . .  and ~" = N - ~/in 
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the second case (y  --- n - r / -  ~') we get 

oo 

A = - - 2 ~ i  - �9 d'qsin27rr/ "q(l+7/)(2+'q)  *=o 

(A3) 

We unify now the expressions (A2) and (A3). Then 

2~r r -~ - ; o~  a v(n)  1 
A =  2i J - ~ + i ~  r/sin2~r~ r / ( l+~ / ) (2+r / )  

X ~ [v(k)v(-1-k-71)-v(k-rl)v(-l-k)] (A4)  
k = 0  

The last integral (A4) is calculated easily for the concrete form of the form 
factor of the theory. For example, let 

v = v b =2 '  +2;/F(3 +2~ ") 

Then 

[v( k ) v ( -  l -  k - r l ) - v (  k -  ~ l ) v ( - 1 -  k )] 
k = 0  

1 1 
=2-2"  r ( 3 ) r ( 1 - 2 7 / )  ~- r ( 5 ) r ( -  1 - 2 n )  

1 
4 + - . .  

F ( 7 ) F ( -  3 - 2 r / )  
,] 

F ( 3 - 2 n )  

and 

qr c-a-ion_ 1 
A =4-a--: I a +/o o z t : _  drl sin2~r~F(3 + 2~/) 

1+2~ 1+2~/ 
x - F ( 3 _ 2 n ) ( l + n ) ( 2 + n )  4 1 2 ( l + n ) ( 2 + n ) F ( l - 2 n )  
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After some calculations of residues at points 7/=0, 1,2 . . . .  we get 

1 +  
k=l 4k(k+l)Z(2Wk) 15 

1 ~ 1 }~--0.27 
8 k : z k ( 1 - k 2 ) ( 1 - 2 k ) ( l + k ) ( 2 + k )  

12. C O N C L U S I O N  

In this paper we have proposed a scheme for constructing a gauge- 
invariant nonlocal theory of four-fermion weak and electromagnetic interac- 
tions with the use of notion of the stochastic space. The main attention was 
paid to the investigations of the low-energy processes and to the proof of 
gauge invariance for the S matrix in each order of the perturbation series. In 
our case the S matrix obtained by the hypothesis of the stochastic space 
satisfies the fundamental principles of quantum field theory: Lorentz co- 
variance, unitarity, causality, and gauge invariance. 

The nonlocal corrections to the AMM of leptons and to the Lamb shift 
are calculated, and restrictions on the parameter  of nonlocality (the elemen- 
tary length l) are obtained. Also some consequences of neutrino oscillations 
and the electromagnetic properties of neutrinos are considered. 

We believe that within our scheme all low-energy electromagnetic and 
"weak" processes may be described without contradiction with the experi- 
mental data. In our model, apart from the elementary length there exists a 
functional arbitrariness connected with the choice of a form of weak and 
electromagnetic potentials at small distances. This situation allows us to 
interpret our approach as a phenomenological scheme having unknown 
parameters in the theory. Therefore our model belongs to the second-class 
approaches mentioned in Section 1 of this review. In our case the occurrence 
of form factors in the theory, i.e., violation of the concept of locality at 
small distances, is connected with the stochasticity of space on small scale. 
Averaging of any fields independent of their nature (i.e., mass, spin, charge, 
etc.) over this stochastic space leads to the nonlocal fields considered by 
Efimov (1977). In other words, stochasticity of space (after averaging over a 
large scale) as a self-memory makes the theory nonlocal. 
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